Posts categorized under Tools and Languages

Strange Start Startling Stop

“Strange Start Startling Stop” was designed by Mary Purdy at the State University of New York in 1985. The composition is based on a hexagonal lattice (above figure). There are four prototiles, marking the four key moments in the shape-shifting process. The first prototile is a regular hexagon, which is also the first tile of the composition. This prototile morphs into a shape that is a composition of four smaller […]

Basic Design | Pattern Deformations | Rhino || basic design | parquet deformation | pattern | prototile | rhino | william huff
November 26, 2022

History: Grasshopper for Beginners (2)

We continue the Grasshopper for Beginners (2) series with the data flow programming concept. Control flow diagrams we use in traditional programming languages control the sequence of executed commands. In data flow diagrams, the focus is not on the order of commands but on how the data progresses. In the previous example, it doesn’t matter whether the Circle and Polyline command runs first. As a result, both are prerequisites for […]

Grasshopper | Parametric Modeling || Beginner | dataflow | design education | Grasshopper
November 23, 2022

Grasshopper for Beginners (1)

This is a new series aimed at beginners in Grasshopper. The design method pioneered by Grasshopper with the way he defines geometric relationships is becoming increasingly popular today. Its interactive interface, which looks like a game or a puzzle at first glance may seem easy and its impressive geometric results are a little dazzling. But when you enter the world of Grasshopper, it is understood that it is not a […]

Grasshopper | Parametric Modeling || Beginner | dataflow | design education | Grasshopper
November 22, 2022

Fourier Series

This is my first experiment with the Fourier Series in Grasshopper using Python. This is a technique to decompose functions into their frequency components. Fourier series have a wide range of applications in physics and engineering. What makes it especially fascinating, however, is the visual intuition it offers. It looks like a kind of mathematical “magic” that emerges from the geometry of frequency. I explored several excellent visual explanations online, […]

Curves | Grasshopper | Rhino Python || fourier | signal
November 14, 2022

Production of Gyroid-like Modular Systems with Non-linear Robotic Hotwire Cutting

This is the new paper with Meryem Nurefşan Yabanigül, published at Automation in Construction. It is also Meryem’s master’s thesis. This study is about testing the production of curved surfaces with non-linear robotic hotwire cutting and shape memory alloys. Below is the abstract of it: Robotic arms are being used by construction firms and schools of architecture around the world in design/build research and material studies. Some of these studies […]

Physical Prototyping | Publications | Robotic Fabrication || gyroid | hotwire cutter | robotic arm | robotic fabrication
January 22, 2022

Vector Projection and Angle

In this session, I will add two new methods to the Vector class. I think this will finish the basics for the vectors. In the future, we are going to need several new methods like adding multiple vectors and interpolation. But for now, I think this would be sufficient to further advance into parametric curves and surfaces. These new methods will be based on the dot product method we created […]

Design Mathematics | Linear Algebra | Rhino Python || angle | dot product | projection | rhinopython
December 21, 2021

Vector Normalization and Dot Product

This is the continuation of the Vector class we started here, and further advanced here, here, and here. This new Rhino Python implementation is mostly educational and partially a hobby. Before this session, we have developed display, magnitude, add, multiply, reverse, and subtract methods. This time, I am adding the vector normalization and dot product methods and seeing the utilizations of the dot product. Line Explanation 1-26 Already explained in […]

Design Mathematics | Linear Algebra | Rhino Python || dot product | unit vector | vector | vector normalization
October 29, 2021

Curve Equations Revisited

This is the continuation of the previous post on parametric curve equations. In this new version, the script picks a NURBS curve from the user. Then, it analyses the curve’s degree and control points. Unfortunately, only the curves with degree+1 number of control points can be processed. In the future, I hope that I will be able to extend this script to include multi-span curves with more than degree +1 […]

Parametric Curves | Rhino Python || control points | equation
October 14, 2021

Vector Magnitude Method in Rhino Python

Today, I am going to make only one addition to the Vector class we recently started in Rhino Python. The magnitude of a vector can be easily calculated by assuming that the axes (2 or 3 axes) of it are perpendicular to each other. This gives us an opportunity to assume a right triangle visually, and calculate the magnitude (length) of a vector by using the Pythagorean Theorem. In short, […]

Design Mathematics | Linear Algebra | Rhino Python || normalization | reversing vector | vector magnitude | vector subtraction
October 12, 2021

Parametric Curve Equations

The parametric curve equations are good examples to demonstrate the bridge between computer-aided design and mathematics. Although useless and pointless, it is a good exercise to extract the curve equations. In this Rhino Python code, I present a generalized equation extractor for Rhino. Rhino curves are good examples de Casteljau and Bézier curves. You can see the mathematical underpinnings of Rhino curves with this exercise: This code asks the user […]

Parametric Curves | Rhino Python || curve | equation | mathematics | parametric
September 19, 2021

SpaceChase for Grasshopper

The SpaceChase plugin for Grasshopper focuses on initiating dynamic capabilities to Space Syntax theory by introducing the “Dynamic Canvas” model along with real-time editing capabilities in an interactive physics-based environment. SpaceChase is a software development project for “Mekan Dizimi Tasarım Uygulaması” under the ARDEB 1001 program of TÜBİTAK. It is a collaborative research project between İstanbul Technical University, İstanbul Bilgi University, and Tuşpa Design Studio. You can find more information about the project […]

Graph Theory | Grasshopper | Space Syntax || dynamic | graph | software development | space syntax
September 16, 2021

More Vector Operations in Rhino Python

This is the continuation of my new project of re-creating the parametric curve and surface methods of Rhino via Python scripting. If you remember, I started with the building block of vector operations, here and here. Then, I defined vector addition and multiplication, before going deeper into the geometric calculations. In fact, they are using the previously defined addition and multiplication methods. New Vector Operations: Subtraction and Reversing In the […]

Design Mathematics | Linear Algebra | Rhino Python || reverse vector | vector | vector subtraction
September 1, 2021

Vector Arithmetics in Rhino Python

Today, I am going to advance the Vector class a bit more. Firstly, I will improve the display method I introduced recently. Then, I will add two new methods which handle the fundamental vector arithmetics in Rhino Python. Improving the Display Method In the previous attempt, I displayed vectors on the origin of the Rhino viewport. The coordinates of the tail of a vector are not stored within the object […]

Design Mathematics | Linear Algebra | Rhino Python || vector addition | vector multiplication
August 20, 2021

Display Method for Vector Class

Let’s continue from the Vector class that started yesterday. Previously, I defined this class to store three numbers (coordinates), named as “components”. I defined a method named __init__ for this. Similarly, I am adding a display method to the Vector class today. Note that I am using Rhino 6 in this code, but it should also work in Rhino 5 or 7. The code Below is the line-by-line explanation of […]

Design Mathematics | Linear Algebra | Rhino Python || object classes | vector
August 17, 2021

Vector Class in Rhino Python

In this new series, I will be using Rhino Python to create some of the fundamental mathematical objects in Rhino. We will learn how to code in Python, and also try to get deeper into the intuition behind some of the fundamental concepts we use every day in Rhino and Grasshopper. The Vector class in Rhino Python is the starting point of this journey. Just like vectors, most of the […]

Design Mathematics | Linear Algebra | Rhino Python || object classes | vector
August 16, 2021

Inverse Kinematics in Rhino Python

This is a simple inverse kinematics solution developed by Andreas Aristidou and Joan Lasenby in 2011. They call it Forwards and Backwards Reaching Inverse Kinematics (FABRIK in short). It was quite interesting the learn this technique because it is a fast and accurate approximation of a kinematic chain. There are very interesting potentials of this technique in terms of architectural simulations. I tried to develop a Rhino Python script in […]

Research | Rhino Python || fabrik | inverse kinematics
May 22, 2019

The Golden Ratio in Grasshopper

I like to deal with possible small computational geometry problems. These fun games are taking 2-3 hours. In addition, these are also memorable exercises. I was reviewing the Anemone plugin last week. I noticed that the Golden Ratio in Grasshopper was not geometrically generated before. Some of the greatest mathematical minds of all ages, from Pythagoras and Euclid in ancient Greece, through the medieval Italian mathematician Leonardo of Pisa and the Renaissance astronomer Johannes Kepler, to present-day scientific […]

Grasshopper | Research || golden ratio | loop
April 12, 2019

Design Exercise of Dataflow Diagrams

Here is a design exercise I’ve been giving to students. It aims to familiarize students with the concept of dataflow diagrams used in Grasshopper. Dataflow is a different concept than conventional computer programming. Here is a good comparison between control flow and dataflow languages. In most educational settings (such as courses and workshops) we concentrate on the fundamental issue of dataflow management via design projects. This requires us to think […]

Grasshopper | Parametric Modeling | Workshops || dataflow diagram | design education | Grasshopper
January 24, 2019

Drawing a Basis Spline with Cubic Bézier Spans

I realized this method of constructing basis splines from given control points while searching for a way to teach students about basis splines. I couldn’t find an easy and visual method to create clamped basis splines by connecting simple cubic Bézier spans. It is a tough job and requires lots of complex equations. However, I suddenly realized that there is a special way of doing that. So I decided to […]

Parametric Curves | Rhino || b-spline | bezier | nurbs | rhino | rhinopython | spline
May 1, 2018

Cubic Bézier Curve with Rhino Python

Below is the Python code you can run in Rhino, that draws a cubic Bézier curve (degree 3). As you can see, the Rhino Python code is very slow and inefficient because we calculate every point with lots of computations. Instead, we can use the spline formulae to make this quicker but I wanted to show that the mathematical construction is parallel to the geometric one. This is a nested […]

Parametric Curves | Rhino Python || bezier | curve | rhinopython | spline
April 30, 2018

Page 8 of 19« First«...678910...»Last »




       
       
  • Search

  • Categories

    • Education
      • Basic Design
      • Design Geometry
      • Design Mathematics
      • Digital Fabrication
      • Parametric Modeling
      • Tutorials
    • Philosophy
      • Phenomenology
      • Philosophy of Language
    • Practice
      • 3D Models
      • Projects
      • Publications
      • Workshops
    • Research
      • 3D Printing
      • Building Facade
      • Calculus
      • Climate Analysis
      • Compass Constructions
      • Computational Geometry
      • Curves
      • Decorative Arts
      • Digital Fabrication
      • Evolutionary Solvers
      • Folding Structures
      • Fractals
      • Graph Theory
      • Interlocking Structures
      • Islamic Patterns
      • Linear Algebra
      • Minimal Surfaces
      • Muqarnas
      • Non-Euclidean Geometry
      • Paneling
      • Parametric Curves
      • Parametric Objects
      • Parametric Surfaces
      • Pattern Deformations
      • Patterns
      • Pavilions
      • Polyhedra
      • Rammed Earth Structures
      • Robotic Fabrication
      • Shape Grammars
      • Simulation
      • Space Syntax
      • Surface Constructions
      • Tessellations
      • Tools
      • Vector Fields
      • Virtual Reality
    • Tools and Languages
      • 3DS Max
      • 3DS Max Script
      • Grasshopper
      • Photoshop
      • Physical Prototyping
      • Revit
      • Rhino
      • Rhino Macro
      • Rhino Python
      • Rhino Script
      • Unity
  • Monthly Archive

    • May 2025 (2)
    • April 2025 (5)
    • December 2024 (40)
    • August 2024 (5)
    • July 2024 (6)
    • April 2024 (4)
    • March 2024 (10)
    • February 2024 (10)
    • January 2024 (8)
    • December 2023 (10)
    • August 2023 (3)
    • July 2023 (3)
    • June 2023 (7)
    • May 2023 (8)
    • April 2023 (7)
    • March 2023 (2)
    • February 2023 (2)
    • January 2023 (3)
    • December 2022 (6)
    • November 2022 (7)
    • January 2022 (1)
    • December 2021 (1)
    • October 2021 (3)
    • September 2021 (4)
    • August 2021 (4)
    • May 2019 (2)
    • April 2019 (1)
    • March 2019 (5)
    • January 2019 (2)
    • December 2018 (1)
    • November 2018 (4)
    • October 2018 (9)
    • July 2018 (1)
    • June 2018 (4)
    • May 2018 (1)
    • April 2018 (4)
    • February 2018 (2)
    • January 2018 (7)
    • August 2017 (9)
    • July 2017 (6)
    • October 2016 (1)
    • May 2015 (5)
    • April 2015 (8)
    • March 2015 (12)
    • February 2015 (4)
    • January 2015 (11)
    • November 2014 (1)
    • August 2014 (1)
    • June 2014 (2)
    • May 2014 (12)
    • April 2014 (5)
    • March 2014 (3)
    • February 2014 (6)
    • January 2014 (4)
    • December 2013 (5)
    • November 2013 (11)
    • October 2013 (2)
    • September 2013 (9)
    • August 2013 (4)
    • July 2013 (2)
    • June 2013 (14)
    • May 2013 (4)
    • April 2013 (10)
    • March 2013 (11)
    • February 2013 (11)
    • January 2013 (10)
    • December 2012 (10)
    • November 2012 (6)
    • October 2012 (13)
    • September 2012 (2)
    • August 2012 (5)
    • July 2012 (14)
    • June 2012 (6)
    • May 2012 (17)
    • April 2012 (15)
    • March 2012 (9)
    • February 2012 (16)
    • January 2012 (18)
    • December 2011 (20)
    • November 2011 (2)
  • Keywords

      3d printing . accuracy . add-on development . aluminium mesh . aluminium wire . anemone . angle . animate form . animation . apartment . aperiodic . approximation . archimedean . archimedean solid . archimedean spiral . architecture . arduino . area . array . ascii . attractor . award . b-spline . baklava . baldaquin . bambu . basic design . basis spline . basketball . Beginner . bend . bezier . bim . bitmap . blob . boolean . brick . bspline . buckminster fuller . buckminsterfuller . buckyball . building regulations . cage-edit . cairopentagonal . calatrava . calculus . canopy . cardboard . card design . cartesian house . casting . catalan solid . cellular . ceramic . cesaro . chamfer . chaos . chopsticks . circle . circle packing . closed . clusters . cnc cutting . color . column . compass . complex number . component . computation . computational design . computational geometry . computerization . concepts . constructivism . contouring . control points . convex hull . cost analysis . crane . crossover . cube . cura . curvature . curve . cycloid . dataflow . dataflow diagram . dataflow management . data list . data recorder . data tree . deboor . decasteljau . deformation . delaunay . deleuze . derivative . descartes . design competition . design contest . designcontest . design education . design exercises . design studio . diagram . digital design . digital fabrication . digital studio . dijkstra . display . divide . dodecahedron . dome . dot product . doyle . doyle spiral . dragon curve . dual . dwg . dymaxion . dynamic . dürer . edge bundling . education . egg-crate . ellipsoid . elongated . emergency . emergent . enneahedron . enneper surface . entrance . epicycles . equation . escher . euclid . euclidean construction . evolution door . excavated dodecahedron . excel . exhibition . fabrication . fabrik . facade . fermat . fibonacci . field . field lines . firefly . flange . flaps . flocking . flow . folding . font . force field . fourier . fractal . function . function curves . galapagos . game engine . gaudi . gaussian curvature . generative components . genetic algorithms . geodesic . geometry . gestalt . girih . goldberg . golden ratio . gosper . graph . graphic design . graph mapper . Grasshopper . grasshopper python . grid . growth . guitar . gyroid . hatch . helix . hendecahedron . herringbone . herschelsenneahedron . hexagon . hilbert . holomorphic . hoopsnake . hose . hotwire cutter . hypar . hyperbolic . hyperbolic space . hyperboloid . ice-ray . icosahedron . icosidodecahedron . image . image sampler . imagesampler . image sampling . interior design . interlocking . inverse kinematics . iqlight . islamic pattern . isovist . istanbul . iteration . ivy . julia . julia set . kagome . kangaroo . kinetic . kirigami . koch . kuka . kündekari . l-systems . ladybug . lamp . lanterns . laser . laser cutting . lattice . layout . leap motion . le corbusier . lecorbusier . leveling . lissajous . lissajous curve . lituus . lokma . loop . lowpoly . macro . mandelbrot . mantı . map . material . mathematics . maxscript . mecon . mesh . metaball . metamorphosis . mihrimahsultan . minimal surface . minimum spanning tree . mirror . miura ori . modeling . modulardesign . moebius . molding . monkey saddle . morph . motion . mug . muqarnas . musicxml . möbius . natural stone . nature . nesting . nexus . ngrid . noise . non-euclidean . normal . normalization . nurbs . nuts and bolts . object classes . occlusion . octahedron . ontology . opennest . origami . packing . paradigm shift . parametric . parametric design . parametric modeling . parametric object . parametric roof . parametric surface . parametric wall . parquet deformation . patch . pattern . pavilion . pedagogy . pendentive . penrose . pentagon . perception . performance . perlin . perlin noise . permaculture . philosophy . photoshop . phyllotaxis . pipe . planar . plane . planter . plaster . platonic solid . point . polygon . polyhedra . polyline . porous . poster . potplus . precast concrete . precision . printing . processing . projection . prototile . prototiling . prototypes . puzzle . pvc hose . pvc pipe . pyramid . python . qshaper . rammed earth . random . raytrace . record history . region . reptile . responsive . reverse vector . reversing vector . revit . revit family . rhino . rhinonest . rhinopython . rhinoscript . rhombicosidodecahedron . rhombus . riemann . risingchair . rivet . robot . robotic arm . robotic fabrication . roof . rubber band . rule-based design . ruled surface . rumi . savoye . science . section . seljuk muqarnas . semi regular . shape grammars . shapeshifting . shortestpath . sierpinski . signal . sinan . sine . sketch . skin . slope . snowflake . snub . snubsquare . socolar . sofa . software development . solar position . solid . sound . space-filling . spacechase . spacefilling . space syntax . spatial allocation . spec . sphenoidhendecahedron . sphere . spiral . spline . square . star . stellated . stellated icosahedron . stellation . string . stripe . structure . student works . subdivision . subsurface . surface . surface paneling . survey . sweep . symbiosis . süleymaniye . table . taenia . tangent . tattoo . technology . tensegrity . terrain . tessellation . tetrahedron . tetrakaidecahedron . text . textile . the primitive hut . tiling . timer . toolbar . tool calibration . topography . topology . transformation . tree . triangle . triangulation . truchet . truncated cuboctahedron . truncatedicosahedron . truncated icosidodecahedron . truncated octahedron . truncated tetrahedron . truss . tube . twisted tower . unit vector . unity . unroll . variation . vasari . vb.net . vbnet . vector . vector addition . vectorfield . vector magnitude . vector multiplication . vector normalization . vectors . vector subtraction . villasavoye . virtual reality . visualization . visual programming . void . voronoi . waffle . waterbomb . water cube . wave . weaire-phelan . webcam . william huff . wind . window . wood . wood stick . wood sticks . Workshop . zumthor

               
copyright 2024 designcoding.net | about designcoding | privacy policy | sitemap | end-user license agreement