Posts categorized under Rhino

Rhino Print Dialog

Here is a simple description of Rhinoceros’ Printing dialog. It is the same with version 4.0, nothing changed in layout and printing dialogs in 5.0. Significantly our Architectural Geometry classes should benefit from this explanation. Most of these options should be tested with a plotter (e.g. pencil widths) before final print-outs. Also, you may try creating a PDF file of your homework from this dialog.

Rhino
November 2, 2013

Circle from Three Points

I learned this method from the open math resources website. I couldn’t help myself repeat it in Rhinoceros. It was quite fun to solve circle tangency problems in 2D, this is one of them: drawing the circle that passes three given points, not using ready-made commands but only geometric tools of the circle (compass) and ruler (line). Here is the sequence of it: First of all, we need to know […]

Compass Constructions | Rhino || circle | euclidean construction
November 1, 2013

Weaire-Phelan Structure

Becoming popular after the Beijing 2008 Olympics National Aquatics Centre‘s facade (which is believed to be a Voronoi subdivision, as an epic mistake), the Weaire Phelan structure is a solution of equal volumes with minimal surface area. Although it is a structural solution, I think for architects, catching the eye with “cute bubbles” seems to be the primary purpose of this structure. (images from arup.com) A More Formal Explanation This […]

Polyhedra | Rhino || dodecahedron | tetrakaidecahedron | weaire-phelan
May 15, 2013

Truchet Tiling

This elegant and straightforward tiling geometry is credited to Dominican priest Sebastien Truchet in 1704 and was documented in a book titled “Memoir sur les Combinasions” (A Memoir on Combinations). After delving into the renowned Truchet Patterns in 2013, I revisited their three-dimensional tiling counterparts today. This served as a valuable exercise in geometry during my previous Design Geometry course. I believe it enhances one’s proficiency in mastering the technical […]

Grasshopper | Patterns | Rhino || tiling | truchet
March 13, 2013

Süleymaniye Mosque

Throne of my lonely niche, my wealth, my love, my moonlight.My most sincere friend, my confidant, my very existence, my Sultan, my one and only love.The most beautiful among the beautiful …My springtime, my merry-faced love, my daytime, my sweetheart, laughing leaf …My plants, my sweet, my rose, the one only who does not distress me in this room …My Istanbul, my karaman, the earth of my AnatoliaMy Badakhshan, my […]

3D Models | Rhino || istanbul | süleymaniye
February 25, 2013

Scripting Tab in Rhino 5

Last year, I posted a way to create a Grasshopper command button in Rhino 4 (here). As the scripting possibilities increase in Rhino 5, the new tab feature can be used to put them together. I’ve made 4 of the most used platforms in a tab named “Scripting”. Here is how I did it; Use right-click on the empty area to open the above menu and select “new tab” to […]

Rhino || toolbar
December 11, 2012

Seamless Patterns

In this exercise, we asked students to develop a method to produce custom tessellations. This is based on the analysis of what is called “Islamic patterns”. We have discussed Eric Brough‘s famous book “Islamic Geometric Patterns”, regarding geometric relationships and linear connectivities via underlying tessellations (such as regular square and hexagonal). Thus, this geometry and drawing exercise is called “Seamless Patterns” in the Design Geometry course at İstanbul Bilgi University. […]

Design Geometry | Rhino | Tessellations || design education | geometry | grid | islamic pattern | pattern | tessellation
November 23, 2012

Tangent Circles Exercise

The first-year Architectural Geometry course includes Euclidean constructions as a study of associative geometry. We have exercised the below questions to study this topic. These are three mutually tangent circles, that can be drawn using only a compass and ruler, without built-in tangency functions in Rhino. Such exercises are expected to improve students’ reasoning. We believe architectural geometry education should encourage a conception that allows students to think about what […]

Compass Constructions | Rhino || circle | euclidean construction | tangent
November 19, 2012

Parquet Deformation Handmade

This is not to explain the method of the Parquet Deformation but to see the potential. After we’ve studied regular, semi-regular, dual, and truncated tessellations with students, the Architectural Geometry course expects them to develop a Parquet Deformation handmade such as those shown below. I call them Parquet Deformation handmade. Because they are manually designed but drawn using traditional CAD. The samples you see below are from this website. It […]

Pattern Deformations | Rhino || parquet deformation | pattern | tessellation
October 31, 2012

Hyperbolic Space: Invert a Point

The poincare disk is still an interesting representation of hyperbolic space for me, full of mysteries. I’ve had several attempts to understand it previously (here and here). Finally, I found a resource* explaining basic concepts about it. I tried to repeat some of the constructions in Rhinoceros, (without any logical purpose). The most important part is the conversion of a Euclidean point into a hyperbolic space. There is no clear […]

Non-Euclidean Geometry | Rhino || hyperbolic | non-euclidean | point
July 26, 2012

Modeling the Buckyball

The Truncated Icosahedron (5,6,6) is an Archimedean Solid we often recognize as the iconic soccer ball. This geometric structure, also affectionately known as the “Buckyball” in honor of the visionary architect Buckminster Fuller, has gained significant popularity and recognition both within the realms of mathematics and everyday life. It is composed of twelve regular pentagons and twenty regular hexagons, meticulously arranged to achieve a harmonious balance. This symmetrical nature makes […]

Polyhedra | Rhino | Tutorials || buckyball | truncatedicosahedron
July 11, 2012

Modeling a Geodesic Sphere

Not all of them, but when you get the idea, you’ll see there are lots of different alternatives for creating Fuller’s famous Geodesic Domes (Although in fact, he is not the inventor of it). I was playing with Platonic Solids in Rhino and realized that the “Pull” command is very useful in subdividing objects. I modeled this in Rhino 4. First, take a regular Icosahedron and divide it. Because, this […]

Polyhedra | Rhino || buckminster fuller | dome | geodesic | icosahedron | sphere
May 23, 2012

Tetrahedron Quick Way

The tetrahedron is a popular platonic solid for designers. We’ve explained how to draw them using equilateral triangles here before. Recently I’ve found (sorry, lost the web address) a much quicker way of modeling a Tetrahedron using a cube. It’s very simple, just connecting the three opposite corners of the cube automatically makes them equal, resulting in the four equal faces. Of course this time you’ll have to calculate the […]

Polyhedra | Rhino || cube | platonic solid | sphere | tetrahedron
May 20, 2012

Some Rhino Tips

Here are three technical tips, that might help you model in Rhinoceros faster. Please note that, in most cases, you’ll find CTRL+F1,F2,F3 and F4 very helpful in modeling and transforming objects in digital space. These key combinations will focus you on Top, Front, Left and Perspective views (maximized) respectively. Also, when you try to express your design process (especially supporting geometries) using different linetypes, it’s possible that you’ll never like those preset linetypes. By […]

Rhino
February 15, 2012

Cellular Canopy

The cellular canopy is an anonymous tutorial on the history recording capability of Rhino. I’ve been using a “pedagogical” version of this tutorial as an educational tool on the introduction to Grasshopper and Parametric Modeling for architects. The interesting thing with such exercises is they quickly attract students’ attention to the process of designing, in other words, “designing the design process”; is one of the first things we should emphasize […]

Rhino | Surface Constructions || component | design education | record history | tessellation
January 8, 2012

Drawing and Unrolling Octahedron

An octahedron is a polyhedron and platonic solid with 8 faces of identical equilateral triangles. In this post, I will try to explain the drawing and unrolling process of the octahedron. It has a close relationship with the cube as it’s dual. In order to construct an octahedron, we first have to create a square. The main problem of drawing the square is determining the right angle (perpendicular axis) to […]

Polyhedra | Rhino || cube | euclidean construction | octahedron | platonic solid | square
December 29, 2011

Recording History in Rhinoceros

Recording History in Rhinoceros3D has interesting potential. You might utilize it in the process of design exploration. We’ll try to show its concept and limitations; First, build two surfaces; one is planar at the world XY plane, and the other represents the “initial” form of your design. Put another surface on the planar one, as if it’s an ideal “component” of the finished geometric composition. Activate the “Record History” button […]

Rhino || parametric wall | record history
December 24, 2011

Icosidodecahedron

Icosidodecahedron is an Archimedian Solid, a thing in between the Platonic Solids of Icosahedron (d20) and Dodecahedron (d12). It is a rectified version of an Icosahedron, constructed by dividing every edge into two equal segments and joining these segments to create a composition of equilateral pentagons and triangles. Archimedian Solids consist of at least two equilateral polygons, whereas Platonic Solids are constructed by only one. We’ll deduce an Icosidodecahedron from […]

Polyhedra | Rhino || archimedean solid | dodecahedron | euclidean construction | icosahedron
December 22, 2011

Modeling an Icosahedron

Today’s polyhedra is the beautiful icosahedron. It is one of the five Platonic Solids with twenty equilateral triangular faces. Its dual is the dodecahedron, which has pentagonal faces. Here, I explained the process of modeling an icosahedron. After creating a regular pentagon, you should find the “tip” point of the Icosahedron by intersecting spheres from at least three of the corner points with a radius of the pentagon’s edges. You […]

3D Models | Polyhedra | Rhino | Tutorials || icosahedron | platonic solid
December 21, 2011

Truncated Tetrahedron

A truncated Tetrahedron is an Archimedian Solid, created by slicing a Tetrahedron. Its faces are regular hexagons and triangles. Assuming you’ve created a Tetrahedron, first join its faces to create a polysurface. Now, you may re-create the lines of Tetrahedron’s edges, either by drawing them or generating them (Curve/Curve from Objects/Duplicate Edge). While the edge lines are selected, hit (Curve/Point Object/Divide Curve By/Number of Segments) and type 3 to create the […]

Polyhedra | Rhino || archimedean solid | euclidean construction | tetrahedron
December 21, 2011

Page 4 of 5«12345»




       
       
  • Search

  • Categories

    • Education
      • Basic Design
      • Design Geometry
      • Design Mathematics
      • Digital Fabrication
      • Parametric Modeling
      • Tutorials
    • Philosophy
      • Phenomenology
      • Philosophy of Language
    • Practice
      • 3D Models
      • Projects
      • Publications
      • Workshops
    • Research
      • 3D Printing
      • Building Facade
      • Calculus
      • Climate Analysis
      • Compass Constructions
      • Computational Geometry
      • Curves
      • Decorative Arts
      • Digital Fabrication
      • Evolutionary Solvers
      • Folding Structures
      • Fractals
      • Graph Theory
      • Interlocking Structures
      • Islamic Patterns
      • Linear Algebra
      • Minimal Surfaces
      • Muqarnas
      • Non-Euclidean Geometry
      • Paneling
      • Parametric Curves
      • Parametric Objects
      • Parametric Surfaces
      • Pattern Deformations
      • Patterns
      • Pavilions
      • Polyhedra
      • Rammed Earth Structures
      • Robotic Fabrication
      • Shape Grammars
      • Simulation
      • Space Syntax
      • Surface Constructions
      • Tessellations
      • Tools
      • Vector Fields
      • Virtual Reality
    • Tools and Languages
      • 3DS Max
      • 3DS Max Script
      • Grasshopper
      • Photoshop
      • Physical Prototyping
      • Revit
      • Rhino
      • Rhino Macro
      • Rhino Python
      • Rhino Script
      • Unity
  • Monthly Archive

    • May 2025 (2)
    • April 2025 (5)
    • December 2024 (40)
    • August 2024 (5)
    • July 2024 (6)
    • April 2024 (4)
    • March 2024 (10)
    • February 2024 (10)
    • January 2024 (8)
    • December 2023 (10)
    • August 2023 (3)
    • July 2023 (3)
    • June 2023 (7)
    • May 2023 (8)
    • April 2023 (7)
    • March 2023 (2)
    • February 2023 (2)
    • January 2023 (3)
    • December 2022 (6)
    • November 2022 (7)
    • January 2022 (1)
    • December 2021 (1)
    • October 2021 (3)
    • September 2021 (4)
    • August 2021 (4)
    • May 2019 (2)
    • April 2019 (1)
    • March 2019 (5)
    • January 2019 (2)
    • December 2018 (1)
    • November 2018 (4)
    • October 2018 (9)
    • July 2018 (1)
    • June 2018 (4)
    • May 2018 (1)
    • April 2018 (4)
    • February 2018 (2)
    • January 2018 (7)
    • August 2017 (9)
    • July 2017 (6)
    • October 2016 (1)
    • May 2015 (5)
    • April 2015 (8)
    • March 2015 (12)
    • February 2015 (4)
    • January 2015 (11)
    • November 2014 (1)
    • August 2014 (1)
    • June 2014 (2)
    • May 2014 (12)
    • April 2014 (5)
    • March 2014 (3)
    • February 2014 (6)
    • January 2014 (4)
    • December 2013 (5)
    • November 2013 (11)
    • October 2013 (2)
    • September 2013 (9)
    • August 2013 (4)
    • July 2013 (2)
    • June 2013 (14)
    • May 2013 (4)
    • April 2013 (10)
    • March 2013 (11)
    • February 2013 (11)
    • January 2013 (10)
    • December 2012 (10)
    • November 2012 (6)
    • October 2012 (13)
    • September 2012 (2)
    • August 2012 (5)
    • July 2012 (14)
    • June 2012 (6)
    • May 2012 (17)
    • April 2012 (15)
    • March 2012 (9)
    • February 2012 (16)
    • January 2012 (18)
    • December 2011 (20)
    • November 2011 (2)
  • Keywords

      3d printing . accuracy . add-on development . aluminium mesh . aluminium wire . anemone . angle . animate form . animation . apartment . aperiodic . approximation . archimedean . archimedean solid . archimedean spiral . architecture . arduino . area . array . ascii . attractor . award . b-spline . baklava . baldaquin . bambu . basic design . basis spline . basketball . Beginner . bend . bezier . bim . bitmap . blob . boolean . brick . bspline . buckminster fuller . buckminsterfuller . buckyball . building regulations . cage-edit . cairopentagonal . calatrava . calculus . canopy . cardboard . card design . cartesian house . casting . catalan solid . cellular . ceramic . cesaro . chamfer . chaos . chopsticks . circle . circle packing . closed . clusters . cnc cutting . color . column . compass . complex number . component . computation . computational design . computational geometry . computerization . concepts . constructivism . contouring . control points . convex hull . cost analysis . crane . crossover . cube . cura . curvature . curve . cycloid . dataflow . dataflow diagram . dataflow management . data list . data recorder . data tree . deboor . decasteljau . deformation . delaunay . deleuze . derivative . descartes . design competition . design contest . designcontest . design education . design exercises . design studio . diagram . digital design . digital fabrication . digital studio . dijkstra . display . divide . dodecahedron . dome . dot product . doyle . doyle spiral . dragon curve . dual . dwg . dymaxion . dynamic . dürer . edge bundling . education . egg-crate . ellipsoid . elongated . emergency . emergent . enneahedron . enneper surface . entrance . epicycles . equation . escher . euclid . euclidean construction . evolution door . excavated dodecahedron . excel . exhibition . fabrication . fabrik . facade . fermat . fibonacci . field . field lines . firefly . flange . flaps . flocking . flow . folding . font . force field . fourier . fractal . function . function curves . galapagos . game engine . gaudi . gaussian curvature . generative components . genetic algorithms . geodesic . geometry . gestalt . girih . goldberg . golden ratio . gosper . graph . graphic design . graph mapper . Grasshopper . grasshopper python . grid . growth . guitar . gyroid . hatch . helix . hendecahedron . herringbone . herschelsenneahedron . hexagon . hilbert . holomorphic . hoopsnake . hose . hotwire cutter . hypar . hyperbolic . hyperbolic space . hyperboloid . ice-ray . icosahedron . icosidodecahedron . image . image sampler . imagesampler . image sampling . interior design . interlocking . inverse kinematics . iqlight . islamic pattern . isovist . istanbul . iteration . ivy . julia . julia set . kagome . kangaroo . kinetic . kirigami . koch . kuka . kündekari . l-systems . ladybug . lamp . lanterns . laser . laser cutting . lattice . layout . leap motion . le corbusier . lecorbusier . leveling . lissajous . lissajous curve . lituus . lokma . loop . lowpoly . macro . mandelbrot . mantı . map . material . mathematics . maxscript . mecon . mesh . metaball . metamorphosis . mihrimahsultan . minimal surface . minimum spanning tree . mirror . miura ori . modeling . modulardesign . moebius . molding . monkey saddle . morph . motion . mug . muqarnas . musicxml . möbius . natural stone . nature . nesting . nexus . ngrid . noise . non-euclidean . normal . normalization . nurbs . nuts and bolts . object classes . occlusion . octahedron . ontology . opennest . origami . packing . paradigm shift . parametric . parametric design . parametric modeling . parametric object . parametric roof . parametric surface . parametric wall . parquet deformation . patch . pattern . pavilion . pedagogy . pendentive . penrose . pentagon . perception . performance . perlin . perlin noise . permaculture . philosophy . photoshop . phyllotaxis . pipe . planar . plane . planter . plaster . platonic solid . point . polygon . polyhedra . polyline . porous . poster . potplus . precast concrete . precision . printing . processing . projection . prototile . prototiling . prototypes . puzzle . pvc hose . pvc pipe . pyramid . python . qshaper . rammed earth . random . raytrace . record history . region . reptile . responsive . reverse vector . reversing vector . revit . revit family . rhino . rhinonest . rhinopython . rhinoscript . rhombicosidodecahedron . rhombus . riemann . risingchair . rivet . robot . robotic arm . robotic fabrication . roof . rubber band . rule-based design . ruled surface . rumi . savoye . science . section . seljuk muqarnas . semi regular . shape grammars . shapeshifting . shortestpath . sierpinski . signal . sinan . sine . sketch . skin . slope . snowflake . snub . snubsquare . socolar . sofa . software development . solar position . solid . sound . space-filling . spacechase . spacefilling . space syntax . spatial allocation . spec . sphenoidhendecahedron . sphere . spiral . spline . square . star . stellated . stellated icosahedron . stellation . string . stripe . structure . student works . subdivision . subsurface . surface . surface paneling . survey . sweep . symbiosis . süleymaniye . table . taenia . tangent . tattoo . technology . tensegrity . terrain . tessellation . tetrahedron . tetrakaidecahedron . text . textile . the primitive hut . tiling . timer . toolbar . tool calibration . topography . topology . transformation . tree . triangle . triangulation . truchet . truncated cuboctahedron . truncatedicosahedron . truncated icosidodecahedron . truncated octahedron . truncated tetrahedron . truss . tube . twisted tower . unit vector . unity . unroll . variation . vasari . vb.net . vbnet . vector . vector addition . vectorfield . vector magnitude . vector multiplication . vector normalization . vectors . vector subtraction . villasavoye . virtual reality . visualization . visual programming . void . voronoi . waffle . waterbomb . water cube . wave . weaire-phelan . webcam . william huff . wind . window . wood . wood stick . wood sticks . Workshop . zumthor

               
copyright 2024 designcoding.net | about designcoding | privacy policy | sitemap | end-user license agreement