Posts categorized under Grasshopper

Wind Tunnel in Vasari

When I was a student, 3D modeling and rendering on the computer was an advanced skill. I only managed to create my first rendering in the 4th-year project.  Then, it became a special talent for designers, even opening a freelance business. However, that came to an end when that technology expanded, reaching everybody. Ten years ago, different ecological analysis methods on geometric designs were also another specialized field that everybody […]

Grasshopper || monkey saddle | vasari | wind
April 13, 2012

Quadrilateral Surface Tessellation

As far as I understood, it is impossible to physically construct double-curved surfaces from quadrilateral and planar faces. This definition tries to find an optimized alternative to this problem. Any surface, single or double curved, is divided into standard sub surfaces. But this time, those surfaces are treated as planar surfaces, therefore one corner is moved to meet this requirement. The output consists of only planar surfaces ready for fabrication. […]

Grasshopper | Surface Constructions || planar | surface | tessellation
April 9, 2012

Monkey Saddle Surface

This is another popular “math surface” being rediscovered by designers nowadays, in 2012. Saddle surfaces, seen above as mentioned earlier (here) have a special type named “Monkey Saddle Surface”. This surface was a dramatic example of how Grasshopper can control equations and instantly show graphical results. The mathematical equations start with Z=… this makes it very easy for us to transform any x-y grid centers (a 2d data tree of […]

Grasshopper | Parametric Surfaces || equation | monkey saddle
April 8, 2012

Escher’s Tessellations

After Puzzling, I tried to establish more of Escher’s basic grid transformations using Grasshopper’s native components. This definition simulates Escher’s transformation of four-cornered grids. The postulate is based on the fact that every quadrilateral (or triangular) planar shape can create regular tessellations without gaps or overlaps. In the traditional method, this tessellation is achieved by rotating the shape 180 degrees and copying afterward. However, in Grasshopper we simply define the […]

Grasshopper | Tessellations || component | escher | tessellation
March 29, 2012

Puzzling

Nowadays, I found myself back into traditional hand sketching. Several failed attempts on Grasshopper led me back there. NURBS (and Grasshopper) somehow limits our conception of surfaces to four-cornered (or two-directional) manifolds. Although it sounds like limiting our designs, having four-cornered component spaces has still lots of experimental fields for designers. Escher is a cult person, who transforms the euclidean coordinate system to meet his design intentions. There are lots […]

Grasshopper | Surface Constructions || puzzle | subsurface | tessellation
March 21, 2012

Trees and Recursive Computing

This topic of trees and recursive computing is inspired by the method shown here at the Rhino Python 101 Primer. This is a beautiful method of recursion that creates tree-like shapes, composed of arcs. I constructed these arcs by using the Arc SED (start, end, direction) method. This requires start and end points and a vector that is tangent to the arc (at the start point). Therefore, the overall look […]

Fractals | Grasshopper || fractal | hoopsnake | loop | tree
March 15, 2012

Taenia Solium

Today, we’ve discussed ways of subdividing entities to create parametric definitions. Curves can be divided into segments, creating snake-like object definitions. This exercise is important regarding the management of data. Vectors and planes are used as reference entities here. Nowadays, it became clear to me that, reference planes are very important because they both include reference points and related vectors as well. The definition studied in this post includes a curve […]

Grasshopper | Parametric Curves || component | curve | subdivision | taenia
March 14, 2012

Parametric Muqarnas

This was an interesting topic in design computing class. Geometric constructions based on strict relationships are becoming exciting in parametric modeling environments. I think muqarnas includes such a relationship. There is a primary method of modeling this shape, introduced by Mete Tüneri. His solution to a simple parametric muqarnas object includes a surface with six reference points, with two boolean differences (one cylinder and one box) creating the component. In […]

Design Geometry | Grasshopper | Muqarnas || Grasshopper | islamic pattern | muqarnas | parametric object | parametric wall
March 13, 2012

Smooth Sketch Data Recorder

Here is a funny sketching system for the “SPEC” homework. [GHX: 0.8.0066] Four (or more) points are created using 2d sliders (MD slider) and decomposed these points into x,y and z numbers. Then, they are re-populated in 3d points by changing their plane. X coordinates are connected into Y, and Y coordinates are connected to Z’s. Tricky part comes then, the X number is defined by a serie of numbers started from […]

Grasshopper || contouring | data recorder | sketch | truss
February 29, 2012

Point Attractors Revisited

This is the basic definition of one point attractor on a grid of points. [GHX: 0.8.0066] Here, the fundamentals of data tree matching can be studied. A hexagonal grid is exploded into points and new polygons are created there. Instead of a standard point distance relation to polygon size, this time the distance factor affects the rotational angle of these polygons. Although the structure of data trees is getting complicated, this has no […]

Grasshopper | Vector Fields || attractor | grid
February 29, 2012

Twisted Tower

Maybe a huge kitsch for contemporary architecture, I know, but a good example of a fundamental problem of constructing geometric relationships. In ARCH362 today, we’ve examined the geometric modeling process that opens us to parametric relationships just by converting it into a diagram of design history. You may follow the construction of such a diagram step by step and see the possible parameters emerge from it. The only rule of […]

Grasshopper || diagram | twisted tower
February 23, 2012

Voronoi Sketching on Spatial Allocation

That was about six months ago, our study for a design competition required a spatial allocation algorithm. An office building with a rectangular plot and a strict functional requirement forced me to the good old Voronoi diagrams, subdividing a surface. Here is the definition file: [GHX: 0.8.0066]. However, there were other design parameters such as the sunlight and orientations of each functional cell. Combining a couple of graph components helped me […]

Computational Geometry | Grasshopper || grid | spatial allocation | voronoi
February 10, 2012

Parametric Truss

This is the old-method Parametric Truss definition. Interestingly this quickly became a solid solution, used and taught for years. I couldn’t find a better answer yet. As Grasshopper updates, some of the components in this definition change but the overall structure remains. Subdivision of a free-form surface and addition of geometric components has, of course, a wide range of alternatives. Maybe we should combine this with different problems and solutions […]

Grasshopper | Surface Constructions || component | surface | tessellation | truss
February 10, 2012

Parametric Furniture Exercise

[GHX:0.8.0066] This is a rather traditional geometry exercise we used to make in MaxScript. Grasshopper is also quite capable of associative geometry and real-time parametric designs of objects. The exercise of designing a furniture family should be based on design research, followed by shape alternatives and sketches (both digital and hand), then might be finalized using this parametric design environment. However, the example presented here is one of the most simplistic […]

Grasshopper || design exercises | parametric object | table
February 10, 2012

Data Recorder and Surfaces

In this experiment, I’m trying to use data recorder to change components on a surface. The component part is a standart triangular construction, but the attractor points are defined by a 2D slider that is connected to a data recorder. Data recorder remembers last 15 points, while you move the 2d slider, last 15 points are projected on the base surface. This creates an illusion as if a “snake” game […]

Grasshopper | Surface Constructions || attractor | component | data recorder | surface
February 7, 2012

Sketching under Building Regulations

At the initial design phase of an apartment project in İstanbul, Nilüfer Kozikoğlu (TUŞPA Architecture) has offered me a job I haven’t done in Grasshopper before. This definition includes a sketch of a possible apartment renewal, analyzing and optimizing data from the contractor’s and property owners’ perspective. It also checks if the proposed solution is appropriate according to the building regulations for that area. In Turkish, KAKS means the maximum […]

Grasshopper || apartment | building regulations | cost analysis
February 6, 2012

Ice-ray Lattices

The design of Chinese window lattices named “ice-ray” is one of the classic studies of Shape Grammars. It is an old and good example of algorithmic design. George Stiny explained their geometric construction based on the parametric Shape Grammars approach. He explained shape rules and the abstract machine that produces the subdivisions. I was especially interested in Shape Grammars when I was a graduate student. I even made a prototype […]

Grasshopper | Shape Grammars || hoopsnake | ice-ray | lattice | loop | rule-based design
February 5, 2012

Hoopsnake: Looping Definitions

In order to start creating recursive algorithms in Grasshopper, I finally managed to run Hoopsnake, a special component developed by Yiannis Chatzikonstantinou. This will help me develop parametric models that include loops. The fundamental experiment here shows a surface subdivision based on iterations. We should define a starting object or data, an operation to be repeated, and a limit that will tell Hoopsnake to stop looping. In this condition, this […]

Grasshopper || grid | hoopsnake | iteration | loop
February 3, 2012

Parquet Deformation of Islamic Patterns

This is another starting point for pattern generation study in a dataflow environment. I tried to implement the parquet deformation of Islamic patterns in Grasshopper. I studied Hankin’s method of Islamic Pattern generation. Then I tried to simulate his process beginning with basic regular tiling (regular hexagonal tessellation). Craig S. Kaplan (here) explains this and other methods in his dissertation. A Simple Foundation We have already experienced the result of […]

Grasshopper | Islamic Patterns | Pattern Deformations || attractor | hexagon | islamic pattern | parquet deformation | tessellation
February 3, 2012

Basic Curve Attractor

This study includes three main topics related to the basics of Grasshopper. The first one is the surface subdivision, the parametric definition of a surface component, that is, in this case, a simple pyramidal object. The second thing is the associative behavior of surface components with an external parameter, that is another entity in space; a curve. Traditionally, this is simply demonstrated by 1) finding the area centroids of each […]

Grasshopper | Vector Fields || attractor | component | pyramid | surface
January 31, 2012

Page 10 of 12« First«...89101112»




       
       
  • Search

  • Categories

    • Education
      • Basic Design
      • Design Geometry
      • Design Mathematics
      • Digital Fabrication
      • Parametric Modeling
      • Tutorials
    • Philosophy
      • Phenomenology
      • Philosophy of Language
    • Practice
      • 3D Models
      • Projects
      • Publications
      • Workshops
    • Research
      • 3D Printing
      • Building Facade
      • Calculus
      • Climate Analysis
      • Compass Constructions
      • Computational Geometry
      • Curves
      • Decorative Arts
      • Digital Fabrication
      • Evolutionary Solvers
      • Folding Structures
      • Fractals
      • Graph Theory
      • Interlocking Structures
      • Islamic Patterns
      • Linear Algebra
      • Minimal Surfaces
      • Muqarnas
      • Non-Euclidean Geometry
      • Paneling
      • Parametric Curves
      • Parametric Objects
      • Parametric Surfaces
      • Pattern Deformations
      • Patterns
      • Pavilions
      • Polyhedra
      • Rammed Earth Structures
      • Robotic Fabrication
      • Shape Grammars
      • Simulation
      • Space Syntax
      • Surface Constructions
      • Tessellations
      • Tools
      • Vector Fields
      • Virtual Reality
    • Tools and Languages
      • 3DS Max
      • 3DS Max Script
      • Grasshopper
      • Photoshop
      • Physical Prototyping
      • Revit
      • Rhino
      • Rhino Macro
      • Rhino Python
      • Rhino Script
      • Unity
  • Monthly Archive

    • May 2025 (2)
    • April 2025 (5)
    • December 2024 (40)
    • August 2024 (5)
    • July 2024 (6)
    • April 2024 (4)
    • March 2024 (10)
    • February 2024 (10)
    • January 2024 (8)
    • December 2023 (10)
    • August 2023 (3)
    • July 2023 (3)
    • June 2023 (7)
    • May 2023 (8)
    • April 2023 (7)
    • March 2023 (2)
    • February 2023 (2)
    • January 2023 (3)
    • December 2022 (6)
    • November 2022 (7)
    • January 2022 (1)
    • December 2021 (1)
    • October 2021 (3)
    • September 2021 (4)
    • August 2021 (4)
    • May 2019 (2)
    • April 2019 (1)
    • March 2019 (5)
    • January 2019 (2)
    • December 2018 (1)
    • November 2018 (4)
    • October 2018 (9)
    • July 2018 (1)
    • June 2018 (4)
    • May 2018 (1)
    • April 2018 (4)
    • February 2018 (2)
    • January 2018 (7)
    • August 2017 (9)
    • July 2017 (6)
    • October 2016 (1)
    • May 2015 (5)
    • April 2015 (8)
    • March 2015 (12)
    • February 2015 (4)
    • January 2015 (11)
    • November 2014 (1)
    • August 2014 (1)
    • June 2014 (2)
    • May 2014 (12)
    • April 2014 (5)
    • March 2014 (3)
    • February 2014 (6)
    • January 2014 (4)
    • December 2013 (5)
    • November 2013 (11)
    • October 2013 (2)
    • September 2013 (9)
    • August 2013 (4)
    • July 2013 (2)
    • June 2013 (14)
    • May 2013 (4)
    • April 2013 (10)
    • March 2013 (11)
    • February 2013 (11)
    • January 2013 (10)
    • December 2012 (10)
    • November 2012 (6)
    • October 2012 (13)
    • September 2012 (2)
    • August 2012 (5)
    • July 2012 (14)
    • June 2012 (6)
    • May 2012 (17)
    • April 2012 (15)
    • March 2012 (9)
    • February 2012 (16)
    • January 2012 (18)
    • December 2011 (20)
    • November 2011 (2)
  • Keywords

      3d printing . accuracy . add-on development . aluminium mesh . aluminium wire . anemone . angle . animate form . animation . apartment . aperiodic . approximation . archimedean . archimedean solid . archimedean spiral . architecture . arduino . area . array . ascii . attractor . award . b-spline . baklava . baldaquin . bambu . basic design . basis spline . basketball . Beginner . bend . bezier . bim . bitmap . blob . boolean . brick . bspline . buckminster fuller . buckminsterfuller . buckyball . building regulations . cage-edit . cairopentagonal . calatrava . calculus . canopy . cardboard . card design . cartesian house . casting . catalan solid . cellular . ceramic . cesaro . chamfer . chaos . chopsticks . circle . circle packing . closed . clusters . cnc cutting . color . column . compass . complex number . component . computation . computational design . computational geometry . computerization . concepts . constructivism . contouring . control points . convex hull . cost analysis . crane . crossover . cube . cura . curvature . curve . cycloid . dataflow . dataflow diagram . dataflow management . data list . data recorder . data tree . deboor . decasteljau . deformation . delaunay . deleuze . derivative . descartes . design competition . design contest . designcontest . design education . design exercises . design studio . diagram . digital design . digital fabrication . digital studio . dijkstra . display . divide . dodecahedron . dome . dot product . doyle . doyle spiral . dragon curve . dual . dwg . dymaxion . dynamic . dürer . edge bundling . education . egg-crate . ellipsoid . elongated . emergency . emergent . enneahedron . enneper surface . entrance . epicycles . equation . escher . euclid . euclidean construction . evolution door . excavated dodecahedron . excel . exhibition . fabrication . fabrik . facade . fermat . fibonacci . field . field lines . firefly . flange . flaps . flocking . flow . folding . font . force field . fourier . fractal . function . function curves . galapagos . game engine . gaudi . gaussian curvature . generative components . genetic algorithms . geodesic . geometry . gestalt . girih . goldberg . golden ratio . gosper . graph . graphic design . graph mapper . Grasshopper . grasshopper python . grid . growth . guitar . gyroid . hatch . helix . hendecahedron . herringbone . herschelsenneahedron . hexagon . hilbert . holomorphic . hoopsnake . hose . hotwire cutter . hypar . hyperbolic . hyperbolic space . hyperboloid . ice-ray . icosahedron . icosidodecahedron . image . image sampler . imagesampler . image sampling . interior design . interlocking . inverse kinematics . iqlight . islamic pattern . isovist . istanbul . iteration . ivy . julia . julia set . kagome . kangaroo . kinetic . kirigami . koch . kuka . kündekari . l-systems . ladybug . lamp . lanterns . laser . laser cutting . lattice . layout . leap motion . le corbusier . lecorbusier . leveling . lissajous . lissajous curve . lituus . lokma . loop . lowpoly . macro . mandelbrot . mantı . map . material . mathematics . maxscript . mecon . mesh . metaball . metamorphosis . mihrimahsultan . minimal surface . minimum spanning tree . mirror . miura ori . modeling . modulardesign . moebius . molding . monkey saddle . morph . motion . mug . muqarnas . musicxml . möbius . natural stone . nature . nesting . nexus . ngrid . noise . non-euclidean . normal . normalization . nurbs . nuts and bolts . object classes . occlusion . octahedron . ontology . opennest . origami . packing . paradigm shift . parametric . parametric design . parametric modeling . parametric object . parametric roof . parametric surface . parametric wall . parquet deformation . patch . pattern . pavilion . pedagogy . pendentive . penrose . pentagon . perception . performance . perlin . perlin noise . permaculture . philosophy . photoshop . phyllotaxis . pipe . planar . plane . planter . plaster . platonic solid . point . polygon . polyhedra . polyline . porous . poster . potplus . precast concrete . precision . printing . processing . projection . prototile . prototiling . prototypes . puzzle . pvc hose . pvc pipe . pyramid . python . qshaper . rammed earth . random . raytrace . record history . region . reptile . responsive . reverse vector . reversing vector . revit . revit family . rhino . rhinonest . rhinopython . rhinoscript . rhombicosidodecahedron . rhombus . riemann . risingchair . rivet . robot . robotic arm . robotic fabrication . roof . rubber band . rule-based design . ruled surface . rumi . savoye . science . section . seljuk muqarnas . semi regular . shape grammars . shapeshifting . shortestpath . sierpinski . signal . sinan . sine . sketch . skin . slope . snowflake . snub . snubsquare . socolar . sofa . software development . solar position . solid . sound . space-filling . spacechase . spacefilling . space syntax . spatial allocation . spec . sphenoidhendecahedron . sphere . spiral . spline . square . star . stellated . stellated icosahedron . stellation . string . stripe . structure . student works . subdivision . subsurface . surface . surface paneling . survey . sweep . symbiosis . süleymaniye . table . taenia . tangent . tattoo . technology . tensegrity . terrain . tessellation . tetrahedron . tetrakaidecahedron . text . textile . the primitive hut . tiling . timer . toolbar . tool calibration . topography . topology . transformation . tree . triangle . triangulation . truchet . truncated cuboctahedron . truncatedicosahedron . truncated icosidodecahedron . truncated octahedron . truncated tetrahedron . truss . tube . twisted tower . unit vector . unity . unroll . variation . vasari . vb.net . vbnet . vector . vector addition . vectorfield . vector magnitude . vector multiplication . vector normalization . vectors . vector subtraction . villasavoye . virtual reality . visualization . visual programming . void . voronoi . waffle . waterbomb . water cube . wave . weaire-phelan . webcam . william huff . wind . window . wood . wood stick . wood sticks . Workshop . zumthor

               
copyright 2025 designcoding.net | about designcoding | privacy policy | sitemap | end-user license agreement