Posts categorized under Computational Geometry

Gaussian Curvature and Surface Paneling

As the design of free-form architectural surfaces becomes easier, questioning and foreseeing the feasibility of the construction of these surfaces becomes important. Such an inquiry requires sufficient knowledge of architectural geometry besides the knowledge of materials and structural systems. In this article, we present a preliminary example of a guide. It supports the design and production process of building surfaces with different geometric properties is presented. This guide aims to […]

Computational Geometry | Curves | Paneling | Publications | Surface Constructions || gaussian curvature
January 24, 2019

Convex Hull with Rhino Python

This Rhino Python code calculates the cross-product determinant used to determine the orientation of three points (current, next_point, and point) to see if they form a left turn or a right turn. This is a well-known technique in computational geometry to check the relative orientation of points. In this script, the direction is the cross-product determinant that determines the relative orientation of the points. If the result is negative, the […]

Computational Geometry | Curves | Linear Algebra | Rhino Python || convex hull
July 28, 2017

Delaunay Triangulation with Rhino Python

Boris Nikolayevich Delaunay was a Russian mathematician and mountain climber. He developed the Delaunay triangulation, which is a method in computational geometry. It is a triangulation of a set of points such that no point is inside the circumcircle of any triangle formed by the points. It’s widely used in computer graphics and mesh generation. In 2013, I made the brute force code in Rhino Python which is a slow […]

Computational Geometry | Rhino Python | Tools || delaunay | triangulation
July 27, 2017

Detecting Inner Regions in Grasshopper

This is a simple trick that shows the utilization of the “surface split” component in Grasshopper. It is used for detecting the inner regions of any given two-dimensional linework. Thus, it resembles the hatch boundary detection of AutoCAD and similar software. There is no built-in hatch component in Grasshopper. But maybe you can use this as a starting point if you want to develop it. The definition starts with drawing […]

Computational Geometry | Grasshopper || curve | hatch | point | region
August 26, 2013

Curve Farthest Point

Today’s tip is about two-dimensional curve-point calculations. It is very handy to use “closest point” components in Grasshopper. You can calculate distances and directions between curves, surfaces, and points. Then, place point objects in relation to the proximity of another object. However, there is no “farthest point” implemented yet. I tried to calculate the farthest point from a curve. First, I tried to translate the curve in a fashion that […]

Computational Geometry | Grasshopper || curve | point
August 26, 2013

Delaunay Exercise

After becoming a ready-made component in Grasshopper, the Delaunay triangulation lost its popularity quickly. It used to be a nice problem of computational geometry for designers obsessed with scripting.  Last month, Benay reminded me of the method of circle checking. She showed her Rhinoscript that creates circles from point triplets and checks if a point is inside or not. Today I studied this in Grasshopper to see if I can […]

Computational Geometry | Grasshopper || delaunay | triangulation
June 28, 2013

Variable Voronoi Study

I’ve been searching for a method to study the Voronoi subdivision in order to manipulate it. There are well-known algorithms for that. But I thought it would be better if I use a projective approach just as I did in studying hyperbolic space (here). This is the metaphor of inflating balloons. However, I inflated cones instead of spheres. This way, it became possible to modify the algorithm. So I was […]

Computational Geometry | Grasshopper || tessellation | voronoi
November 30, 2012

Möbius Strip Fabrication

The Möbius strip is a famous mathematical object. Although being in three-dimensional space, it is a closed-loop of only one surface and only one edge. This quality alone makes the object an interesting study for computational design. I aimed to create an object to test our new CNC machine. I wanted to test the egg-crate interlocking fabrication method. This is why the study became a Möbius strip fabrication. Apart from […]

Computational Geometry | Digital Fabrication | Grasshopper || digital fabrication | egg-crate | interlocking | möbius
October 31, 2012

Isovist Component

Yesterday, Kağan asked me about the isovist component in Grasshopper and how it works. In fact, it is a long story, I said because once upon a time, I was curious about Space Syntax theory as my old friend Ela Çil introduced it. So, here is an original definition of Michael Benedikt; “The environment is defined as a collection of visible actual surfaces in space. An isovist is the set […]

Computational Geometry | Grasshopper || isovist | raytrace | space syntax
May 26, 2012

MetaBalls in 3D

Playing with the 2D Metaball component in Grasshopper. I was curious about why there are no Metaballs in 3D in Grasshopper. Then, I realized that in fact, the 2D Metaball component is creating a section of a 3D Metaball computation. I think it is a topic worth studying even 10 years after this original post to develop an easy way to create the metaball surfaces. In 2012, thanks to the […]

Computational Geometry | Grasshopper || blob | metaball
May 23, 2012

Shortest Path Generator

This is the continuation of my scripting experiment within Grasshopper. Like the minimum spanning tree algorithm, this is also a famous problem of computational geometry; the shortest path problem. I’m now coding faster and understanding the namespace more easily in Grasshopper. This time, the challenge was implementing Dijkstra’s algorithm for the Shortest Path Generator. Again, it’s a quite powerful algorithm, I even plan to use it in my current project. Although […]

Computational Geometry | Grasshopper | Tools || dijkstra | shortestpath
April 30, 2012

Minimum Spanning Tree

This is the updated version of my MST code from 2012. After over a hundred hours of Rhinocommon and Grasshopper SDK studies, and lots of dead ends, I was finally able to calculate the minimum spanning tree of any given curve network in Grasshopper. Problems like these are interesting to me because of their clear logic and diverse areas of applications in design. I tried to simulate Dijkstra’s, Kruskal’s, and […]

Computational Geometry | Rhino Script | Tools || minimum spanning tree | vbnet
April 26, 2012

Voronoi Sketching on Spatial Allocation

That was about six months ago, our study for a design competition required a spatial allocation algorithm. An office building with a rectangular plot and a strict functional requirement forced me to the good old Voronoi diagrams, subdividing a surface. Here is the definition file: [GHX: 0.8.0066]. However, there were other design parameters such as the sunlight and orientations of each functional cell. Combining a couple of graph components helped me […]

Computational Geometry | Grasshopper || grid | spatial allocation | voronoi
February 10, 2012




       
       
  • Search

  • Categories

    • Education
      • Basic Design
      • Design Geometry
      • Design Mathematics
      • Digital Fabrication
      • Parametric Modeling
      • Tutorials
    • Philosophy
      • Phenomenology
      • Philosophy of Language
    • Practice
      • 3D Models
      • Projects
      • Publications
      • Workshops
    • Research
      • 3D Printing
      • Building Facade
      • Calculus
      • Climate Analysis
      • Compass Constructions
      • Computational Geometry
      • Curves
      • Decorative Arts
      • Digital Fabrication
      • Evolutionary Solvers
      • Folding Structures
      • Fractals
      • Graph Theory
      • Interlocking Structures
      • Islamic Patterns
      • Linear Algebra
      • Minimal Surfaces
      • Muqarnas
      • Non-Euclidean Geometry
      • Paneling
      • Parametric Curves
      • Parametric Objects
      • Parametric Surfaces
      • Pattern Deformations
      • Patterns
      • Pavilions
      • Polyhedra
      • Rammed Earth Structures
      • Robotic Fabrication
      • Shape Grammars
      • Simulation
      • Space Syntax
      • Surface Constructions
      • Tessellations
      • Tools
      • Vector Fields
      • Virtual Reality
    • Tools and Languages
      • 3DS Max
      • 3DS Max Script
      • Grasshopper
      • Photoshop
      • Physical Prototyping
      • Revit
      • Rhino
      • Rhino Macro
      • Rhino Python
      • Rhino Script
      • Unity
  • Monthly Archive

    • May 2025 (2)
    • April 2025 (5)
    • December 2024 (40)
    • August 2024 (5)
    • July 2024 (6)
    • April 2024 (4)
    • March 2024 (10)
    • February 2024 (10)
    • January 2024 (8)
    • December 2023 (10)
    • August 2023 (3)
    • July 2023 (3)
    • June 2023 (7)
    • May 2023 (8)
    • April 2023 (7)
    • March 2023 (2)
    • February 2023 (2)
    • January 2023 (3)
    • December 2022 (6)
    • November 2022 (7)
    • January 2022 (1)
    • December 2021 (1)
    • October 2021 (3)
    • September 2021 (4)
    • August 2021 (4)
    • May 2019 (2)
    • April 2019 (1)
    • March 2019 (5)
    • January 2019 (2)
    • December 2018 (1)
    • November 2018 (4)
    • October 2018 (9)
    • July 2018 (1)
    • June 2018 (4)
    • May 2018 (1)
    • April 2018 (4)
    • February 2018 (2)
    • January 2018 (7)
    • August 2017 (9)
    • July 2017 (6)
    • October 2016 (1)
    • May 2015 (5)
    • April 2015 (8)
    • March 2015 (12)
    • February 2015 (4)
    • January 2015 (11)
    • November 2014 (1)
    • August 2014 (1)
    • June 2014 (2)
    • May 2014 (12)
    • April 2014 (5)
    • March 2014 (3)
    • February 2014 (6)
    • January 2014 (4)
    • December 2013 (5)
    • November 2013 (11)
    • October 2013 (2)
    • September 2013 (9)
    • August 2013 (4)
    • July 2013 (2)
    • June 2013 (14)
    • May 2013 (4)
    • April 2013 (10)
    • March 2013 (11)
    • February 2013 (11)
    • January 2013 (10)
    • December 2012 (10)
    • November 2012 (6)
    • October 2012 (13)
    • September 2012 (2)
    • August 2012 (5)
    • July 2012 (14)
    • June 2012 (6)
    • May 2012 (17)
    • April 2012 (15)
    • March 2012 (9)
    • February 2012 (16)
    • January 2012 (18)
    • December 2011 (20)
    • November 2011 (2)
  • Keywords

      3d printing . accuracy . add-on development . aluminium mesh . aluminium wire . anemone . angle . animate form . animation . apartment . aperiodic . approximation . archimedean . archimedean solid . archimedean spiral . architecture . arduino . area . array . ascii . attractor . award . b-spline . baklava . baldaquin . bambu . basic design . basis spline . basketball . Beginner . bend . bezier . bim . bitmap . blob . boolean . brick . bspline . buckminster fuller . buckminsterfuller . buckyball . building regulations . cage-edit . cairopentagonal . calatrava . calculus . canopy . cardboard . card design . cartesian house . casting . catalan solid . cellular . ceramic . cesaro . chamfer . chaos . chopsticks . circle . circle packing . closed . clusters . cnc cutting . color . column . compass . complex number . component . computation . computational design . computational geometry . computerization . concepts . constructivism . contouring . control points . convex hull . cost analysis . crane . crossover . cube . cura . curvature . curve . cycloid . dataflow . dataflow diagram . dataflow management . data list . data recorder . data tree . deboor . decasteljau . deformation . delaunay . deleuze . derivative . descartes . design competition . design contest . designcontest . design education . design exercises . design studio . diagram . digital design . digital fabrication . digital studio . dijkstra . display . divide . dodecahedron . dome . dot product . doyle . doyle spiral . dragon curve . dual . dwg . dymaxion . dynamic . dürer . edge bundling . education . egg-crate . ellipsoid . elongated . emergency . emergent . enneahedron . enneper surface . entrance . epicycles . equation . escher . euclid . euclidean construction . evolution door . excavated dodecahedron . excel . exhibition . fabrication . fabrik . facade . fermat . fibonacci . field . field lines . firefly . flange . flaps . flocking . flow . folding . font . force field . fourier . fractal . function . function curves . galapagos . game engine . gaudi . gaussian curvature . generative components . genetic algorithms . geodesic . geometry . gestalt . girih . goldberg . golden ratio . gosper . graph . graphic design . graph mapper . Grasshopper . grasshopper python . grid . growth . guitar . gyroid . hatch . helix . hendecahedron . herringbone . herschelsenneahedron . hexagon . hilbert . holomorphic . hoopsnake . hose . hotwire cutter . hypar . hyperbolic . hyperbolic space . hyperboloid . ice-ray . icosahedron . icosidodecahedron . image . image sampler . imagesampler . image sampling . interior design . interlocking . inverse kinematics . iqlight . islamic pattern . isovist . istanbul . iteration . ivy . julia . julia set . kagome . kangaroo . kinetic . kirigami . koch . kuka . kündekari . l-systems . ladybug . lamp . lanterns . laser . laser cutting . lattice . layout . leap motion . le corbusier . lecorbusier . leveling . lissajous . lissajous curve . lituus . lokma . loop . lowpoly . macro . mandelbrot . mantı . map . material . mathematics . maxscript . mecon . mesh . metaball . metamorphosis . mihrimahsultan . minimal surface . minimum spanning tree . mirror . miura ori . modeling . modulardesign . moebius . molding . monkey saddle . morph . motion . mug . muqarnas . musicxml . möbius . natural stone . nature . nesting . nexus . ngrid . noise . non-euclidean . normal . normalization . nurbs . nuts and bolts . object classes . occlusion . octahedron . ontology . opennest . origami . packing . paradigm shift . parametric . parametric design . parametric modeling . parametric object . parametric roof . parametric surface . parametric wall . parquet deformation . patch . pattern . pavilion . pedagogy . pendentive . penrose . pentagon . perception . performance . perlin . perlin noise . permaculture . philosophy . photoshop . phyllotaxis . pipe . planar . plane . planter . plaster . platonic solid . point . polygon . polyhedra . polyline . porous . poster . potplus . precast concrete . precision . printing . processing . projection . prototile . prototiling . prototypes . puzzle . pvc hose . pvc pipe . pyramid . python . qshaper . rammed earth . random . raytrace . record history . region . reptile . responsive . reverse vector . reversing vector . revit . revit family . rhino . rhinonest . rhinopython . rhinoscript . rhombicosidodecahedron . rhombus . riemann . risingchair . rivet . robot . robotic arm . robotic fabrication . roof . rubber band . rule-based design . ruled surface . rumi . savoye . science . section . seljuk muqarnas . semi regular . shape grammars . shapeshifting . shortestpath . sierpinski . signal . sinan . sine . sketch . skin . slope . snowflake . snub . snubsquare . socolar . sofa . software development . solar position . solid . sound . space-filling . spacechase . spacefilling . space syntax . spatial allocation . spec . sphenoidhendecahedron . sphere . spiral . spline . square . star . stellated . stellated icosahedron . stellation . string . stripe . structure . student works . subdivision . subsurface . surface . surface paneling . survey . sweep . symbiosis . süleymaniye . table . taenia . tangent . tattoo . technology . tensegrity . terrain . tessellation . tetrahedron . tetrakaidecahedron . text . textile . the primitive hut . tiling . timer . toolbar . tool calibration . topography . topology . transformation . tree . triangle . triangulation . truchet . truncated cuboctahedron . truncatedicosahedron . truncated icosidodecahedron . truncated octahedron . truncated tetrahedron . truss . tube . twisted tower . unit vector . unity . unroll . variation . vasari . vb.net . vbnet . vector . vector addition . vectorfield . vector magnitude . vector multiplication . vector normalization . vectors . vector subtraction . villasavoye . virtual reality . visualization . visual programming . void . voronoi . waffle . waterbomb . water cube . wave . weaire-phelan . webcam . william huff . wind . window . wood . wood stick . wood sticks . Workshop . zumthor

               
copyright 2024 designcoding.net | about designcoding | privacy policy | sitemap | end-user license agreement