Posts with the keyword voronoi

Voronoi Cage

I have created a straightforward Grasshopper code that generates a Voronoi diagram on a surface. Then, it adds thickness to form a structure called a “Voronoi Cage.” In the initial step, I project a surface onto the ground plane (Z=0). The projected frame serves as the boundary for two operations: generating random points using the Populate 2D (Pop2D) function and calculating the Voronoi diagram based on these points. The resulting […]

Grasshopper | Surface Constructions || parametric surface | surface | voronoi
June 26, 2023

3D Voronoi Puzzle

Here, our aim is to generate a 3D Voronoi puzzle ready for 3D printing. Below is the step-by-step explanation of this Grasshopper algorithm: The 3D Voronoi Puzzle Step number one is the application we saw earlier in the Voronoi diagrams. We obtain random polyhedra within a given volume quickly. The basic features we need for the puzzle are: (1) When we solve the puzzle the final volume should be a […]

Grasshopper || interlocking | puzzle | voronoi
May 3, 2023

Voronoi Puzzle

In this Voronoi puzzle exercise, we derive two-dimensional puzzles by using Voronoi diagrams. This is similar to my previous studies here, and here. Part 1: The Random Voronoi Diagram In section 1 of the below image, I use a rectangular region to generate random points. Then, I create a standard Voronoi diagram by using those points. Finally, I explode the Voronoi cells. Part 2: The Voronoi Puzzle Details In the […]

Grasshopper | Tessellations || puzzle | voronoi
April 5, 2023

Delaunay Triangulation on Surface

This is a useful tip both to solve some of the problems with custom surface subdivisions, and to explain the uses of parametric surface evaluations (the U, V, W thing) and the practical use of data lists. Step 1: Put your points inside 0,0,0 and 1,1,0 so that the resulting coordinates can easily be converted to U and Vs. In the example, we are putting some random points between 0,0 and […]

Grasshopper | Surface Constructions || delaunay | surface | voronoi
March 26, 2015

Image Sampler Revisited

Image Sampler of Grasshopper saves life if used responsibly. While explaining the component to this year’s ARCH362 students, I used this simple example that generates numbers from a beautiful picture of “metal foam” and uses it to generate lots of circles: Metal foams are lightweight but strong materials, that are typically produced by injecting gas into the liquid metal. Of course, it becomes easier to teach something when you manage […]

Grasshopper | Parametric Modeling || bitmap | image | voronoi
March 17, 2015

Karyokinesis

While searching for a way to work with random points and growing populations, this idea appeared accidentally. I wasn’t trying to mimic the behavior of Karyokinesis of biological cells (in fact I’m in serious doubt about biomimicry in general). The trick is to use a timer + data recorder + a knob for the arbitrary user input. It starts to breed when you start the timer, but to change the […]

Curves | Grasshopper || cellular | timer | voronoi
November 2, 2013

Image Processing Basics

This was the initial example of image processing in our Parametric Modeling class. I saw this design on Maxthreads Architectural Design’s website (especially here). Hand-drawn and digital diagrams can also be digitized and used in order to describe certain parameters for design formation. Such algorithms would similarly use the Image Sampler Component of Grasshopper. In the algorithm below, image data is used to capture black pixels as attractors of a Voronoi subdivision. […]

Parametric Modeling || attractor | image | voronoi
November 1, 2013

Fracture

Fracture is a simple effect experiment on Grasshopper. Although it is not the best tool for an interactive media installation regarding its performance, I tried to use it as a simple sketching tool for concept development. It is the sketch of a material system we are working on nowadays for an Exhibition. The initial diagram of Grasshopper includes a nested Voronoi subdivision broken by moving attractor points. It is not […]

Projects || attractor | planar | surface | voronoi
September 2, 2013

Voronoi Kündekâri

Kündekâri is an old woodworking technique, composed of interlocking parts without any glue or nail. It is primarily used in wooden doors and minbers inside Mosques. The interlocking system makes the whole structure very durable. I tried to model this technique using the Voronoi pattern, naming it Voronoi Kündekâri. Below you see a typical example of Kündekâri pieces and the resulting pattern. The interesting part of the Grasshopper model is […]

Grasshopper | Tessellations || interlocking | kündekari | puzzle | voronoi
June 28, 2013

Variable Voronoi Study

I’ve been searching for a method to study the Voronoi subdivision in order to manipulate it. There are well-known algorithms for that. But I thought it would be better if I use a projective approach just as I did in studying hyperbolic space (here). This is the metaphor of inflating balloons. However, I inflated cones instead of spheres. This way, it became possible to modify the algorithm. So I was […]

Computational Geometry | Grasshopper || tessellation | voronoi
November 30, 2012

Subdivide by Image Contrast

This was my old plan to work with images in Grasshopper. Certainly, that was not the result I expected, but this could be counted as a starting point. After seeing beautiful circle packing compositions here, I decided to program Grasshopper, so that it’ll create a subdivision, based on image data. This was the initial version, just subdividing a plane with Voronoi points and visualizing it according to the image’s color […]

Grasshopper || image | subdivision | voronoi
October 17, 2012

Voronoi Sketching on Spatial Allocation

That was about six months ago, our study for a design competition required a spatial allocation algorithm. An office building with a rectangular plot and a strict functional requirement forced me to the good old Voronoi diagrams, subdividing a surface. Here is the definition file: [GHX: 0.8.0066]. However, there were other design parameters such as the sunlight and orientations of each functional cell. Combining a couple of graph components helped me […]

Computational Geometry | Grasshopper || grid | spatial allocation | voronoi
February 10, 2012




       
       
  • Search

  • Categories

    • Education
      • Basic Design
      • Design Geometry
      • Design Mathematics
      • Digital Fabrication
      • Parametric Modeling
      • Tutorials
    • Philosophy
      • Phenomenology
      • Philosophy of Language
    • Practice
      • 3D Models
      • Projects
      • Publications
      • Workshops
    • Research
      • 3D Printing
      • Building Facade
      • Calculus
      • Climate Analysis
      • Compass Constructions
      • Computational Geometry
      • Curves
      • Decorative Arts
      • Digital Fabrication
      • Evolutionary Solvers
      • Folding Structures
      • Fractals
      • Graph Theory
      • Interlocking Structures
      • Islamic Patterns
      • Linear Algebra
      • Minimal Surfaces
      • Muqarnas
      • Non-Euclidean Geometry
      • Paneling
      • Parametric Curves
      • Parametric Objects
      • Parametric Surfaces
      • Pattern Deformations
      • Patterns
      • Pavilions
      • Polyhedra
      • Rammed Earth Structures
      • Robotic Fabrication
      • Shape Grammars
      • Simulation
      • Space Syntax
      • Surface Constructions
      • Tessellations
      • Tools
      • Vector Fields
      • Virtual Reality
    • Tools and Languages
      • 3DS Max
      • 3DS Max Script
      • Grasshopper
      • Photoshop
      • Physical Prototyping
      • Revit
      • Rhino
      • Rhino Macro
      • Rhino Python
      • Rhino Script
      • Unity
  • Monthly Archive

    • May 2025 (2)
    • April 2025 (5)
    • December 2024 (40)
    • August 2024 (5)
    • July 2024 (6)
    • April 2024 (4)
    • March 2024 (10)
    • February 2024 (10)
    • January 2024 (8)
    • December 2023 (10)
    • August 2023 (3)
    • July 2023 (3)
    • June 2023 (7)
    • May 2023 (8)
    • April 2023 (7)
    • March 2023 (2)
    • February 2023 (2)
    • January 2023 (3)
    • December 2022 (6)
    • November 2022 (7)
    • January 2022 (1)
    • December 2021 (1)
    • October 2021 (3)
    • September 2021 (4)
    • August 2021 (4)
    • May 2019 (2)
    • April 2019 (1)
    • March 2019 (5)
    • January 2019 (2)
    • December 2018 (1)
    • November 2018 (4)
    • October 2018 (9)
    • July 2018 (1)
    • June 2018 (4)
    • May 2018 (1)
    • April 2018 (4)
    • February 2018 (2)
    • January 2018 (7)
    • August 2017 (9)
    • July 2017 (6)
    • October 2016 (1)
    • May 2015 (5)
    • April 2015 (8)
    • March 2015 (12)
    • February 2015 (4)
    • January 2015 (11)
    • November 2014 (1)
    • August 2014 (1)
    • June 2014 (2)
    • May 2014 (12)
    • April 2014 (5)
    • March 2014 (3)
    • February 2014 (6)
    • January 2014 (4)
    • December 2013 (5)
    • November 2013 (11)
    • October 2013 (2)
    • September 2013 (9)
    • August 2013 (4)
    • July 2013 (2)
    • June 2013 (14)
    • May 2013 (4)
    • April 2013 (10)
    • March 2013 (11)
    • February 2013 (11)
    • January 2013 (10)
    • December 2012 (10)
    • November 2012 (6)
    • October 2012 (13)
    • September 2012 (2)
    • August 2012 (5)
    • July 2012 (14)
    • June 2012 (6)
    • May 2012 (17)
    • April 2012 (15)
    • March 2012 (9)
    • February 2012 (16)
    • January 2012 (18)
    • December 2011 (20)
    • November 2011 (2)
  • Keywords

      3d printing . accuracy . add-on development . aluminium mesh . aluminium wire . anemone . angle . animate form . animation . apartment . aperiodic . approximation . archimedean . archimedean solid . archimedean spiral . architecture . arduino . area . array . ascii . attractor . award . b-spline . baklava . baldaquin . bambu . basic design . basis spline . basketball . Beginner . bend . bezier . bim . bitmap . blob . boolean . brick . bspline . buckminster fuller . buckminsterfuller . buckyball . building regulations . cage-edit . cairopentagonal . calatrava . calculus . canopy . cardboard . card design . cartesian house . casting . catalan solid . cellular . ceramic . cesaro . chamfer . chaos . chopsticks . circle . circle packing . closed . clusters . cnc cutting . color . column . compass . complex number . component . computation . computational design . computational geometry . computerization . concepts . constructivism . contouring . control points . convex hull . cost analysis . crane . crossover . cube . cura . curvature . curve . cycloid . dataflow . dataflow diagram . dataflow management . data list . data recorder . data tree . deboor . decasteljau . deformation . delaunay . deleuze . derivative . descartes . design competition . design contest . designcontest . design education . design exercises . design studio . diagram . digital design . digital fabrication . digital studio . dijkstra . display . divide . dodecahedron . dome . dot product . doyle . doyle spiral . dragon curve . dual . dwg . dymaxion . dynamic . dürer . edge bundling . education . egg-crate . ellipsoid . elongated . emergency . emergent . enneahedron . enneper surface . entrance . epicycles . equation . escher . euclid . euclidean construction . evolution door . excavated dodecahedron . excel . exhibition . fabrication . fabrik . facade . fermat . fibonacci . field . field lines . firefly . flange . flaps . flocking . flow . folding . font . force field . fourier . fractal . function . function curves . galapagos . game engine . gaudi . gaussian curvature . generative components . genetic algorithms . geodesic . geometry . gestalt . girih . goldberg . golden ratio . gosper . graph . graphic design . graph mapper . Grasshopper . grasshopper python . grid . growth . guitar . gyroid . hatch . helix . hendecahedron . herringbone . herschelsenneahedron . hexagon . hilbert . holomorphic . hoopsnake . hose . hotwire cutter . hypar . hyperbolic . hyperbolic space . hyperboloid . ice-ray . icosahedron . icosidodecahedron . image . image sampler . imagesampler . image sampling . interior design . interlocking . inverse kinematics . iqlight . islamic pattern . isovist . istanbul . iteration . ivy . julia . julia set . kagome . kangaroo . kinetic . kirigami . koch . kuka . kündekari . l-systems . ladybug . lamp . lanterns . laser . laser cutting . lattice . layout . leap motion . le corbusier . lecorbusier . leveling . lissajous . lissajous curve . lituus . lokma . loop . lowpoly . macro . mandelbrot . mantı . map . material . mathematics . maxscript . mecon . mesh . metaball . metamorphosis . mihrimahsultan . minimal surface . minimum spanning tree . mirror . miura ori . modeling . modulardesign . moebius . molding . monkey saddle . morph . motion . mug . muqarnas . musicxml . möbius . natural stone . nature . nesting . nexus . ngrid . noise . non-euclidean . normal . normalization . nurbs . nuts and bolts . object classes . occlusion . octahedron . ontology . opennest . origami . packing . paradigm shift . parametric . parametric design . parametric modeling . parametric object . parametric roof . parametric surface . parametric wall . parquet deformation . patch . pattern . pavilion . pedagogy . pendentive . penrose . pentagon . perception . performance . perlin . perlin noise . permaculture . philosophy . photoshop . phyllotaxis . pipe . planar . plane . planter . plaster . platonic solid . point . polygon . polyhedra . polyline . porous . poster . potplus . precast concrete . precision . printing . processing . projection . prototile . prototiling . prototypes . puzzle . pvc hose . pvc pipe . pyramid . python . qshaper . rammed earth . random . raytrace . record history . region . reptile . responsive . reverse vector . reversing vector . revit . revit family . rhino . rhinonest . rhinopython . rhinoscript . rhombicosidodecahedron . rhombus . riemann . risingchair . rivet . robot . robotic arm . robotic fabrication . roof . rubber band . rule-based design . ruled surface . rumi . savoye . science . section . seljuk muqarnas . semi regular . shape grammars . shapeshifting . shortestpath . sierpinski . signal . sinan . sine . sketch . skin . slope . snowflake . snub . snubsquare . socolar . sofa . software development . solar position . solid . sound . space-filling . spacechase . spacefilling . space syntax . spatial allocation . spec . sphenoidhendecahedron . sphere . spiral . spline . square . star . stellated . stellated icosahedron . stellation . string . stripe . structure . student works . subdivision . subsurface . surface . surface paneling . survey . sweep . symbiosis . süleymaniye . table . taenia . tangent . tattoo . technology . tensegrity . terrain . tessellation . tetrahedron . tetrakaidecahedron . text . textile . the primitive hut . tiling . timer . toolbar . tool calibration . topography . topology . transformation . tree . triangle . triangulation . truchet . truncated cuboctahedron . truncatedicosahedron . truncated icosidodecahedron . truncated octahedron . truncated tetrahedron . truss . tube . twisted tower . unit vector . unity . unroll . variation . vasari . vb.net . vbnet . vector . vector addition . vectorfield . vector magnitude . vector multiplication . vector normalization . vectors . vector subtraction . villasavoye . virtual reality . visualization . visual programming . void . voronoi . waffle . waterbomb . water cube . wave . weaire-phelan . webcam . william huff . wind . window . wood . wood stick . wood sticks . Workshop . zumthor

               
copyright 2024 designcoding.net | about designcoding | privacy policy | sitemap | end-user license agreement