
 eCAADe 25 941-Session 20: Shape Studies

QSHAPER
A CAD Utility for Shape Grammars

Tuğrul Yazar1, Birgul Colakoglu2

Yıldız Technical University, Design & Computation Unit, Turkey
http://www.bot.yildiz.edu.tr
1turuly@yahoo.com, 2bigi@alum.mit.edu

This paper presents an ongoing research about a new computer-aided design
tool named QShaper (QS). It is developed within a visualization software as a
scripted utility. It aims to assist designers and students in creating and exploring
rule-based designs.

Keywords. Computational design tools; shape grammars; scripted utility;
graphical user-interface.

Introduction

Shape Grammars, invented by Stiny and Gips (1972)
have shown to be powerful rule-based design sys-
tems. They have well developed mathematical
foundation that provides formal mechanism for
their computer implementations. Gips (1999) classi-
fies possible computer tools that implement Shape
Grammars in four groups: 1-Generation, 2-Parsing,
3-Inference and 4-Computer-aided design tools for
Shape Grammars.

Several tools for Shape Grammars have been de-
veloped such as Shaper2D (McGill, 2002), GEdit (Tapia,
1999), and 3DShaper (Wang and Duarte, 2002). These
applications explore two-dimensional and three-
dimensional Shape Grammars and are powerful tools
for learning its’ fundamental concepts. Most of these
tools have been used for education. However, their
use in the design practice has been limited.

The fourth type of tools would assist (users)
designers creating a Shape Grammar by providing
sophisticated functions. This type of an application
would be a plug-in for a computer-aided design

software that would use Shape Grammars to help
the designer (Gips, 1999). AutoGrammar (Celani,
2001), developed as plug-in under a common CAD
software is of such kind that is used in design work-
shops as an auxiliray design tool.

This paper describes a new Shape Grammar tool,
QShaper (QS) developed within a common visualiza-
tion software as a scripted utility. QS is using Shape
Grammars to help designers explore computation-
ally generated rule-based design variations. It func-
tions both as an experimental tool for practical use,
and an educational platform for explaining the basic
mechanics of Shape Grammars.

QS is not claiming to be a complete solution for
the specific design paradigm. Therefore, it is open to
add-ons or changes in its structure.

Quick Shaper

QShaper means “Quick Shaper”, focusing on the
user-friendliness. Main concern of this research is to
develop a powerful and easy-to-use tool that pro-
vides fundamentals of Shape Grammars.

942 eCAADe 25 - Session 20: Shape Studies

QS operates on maximum user-interaction. This
involves a user choosing which rule to apply and
how to apply it in each step of computation. In this
case, the user’s role approximates the role of a de-
signer (Knight, 1999). In order to control different
groups (shapes, rules, and the design) at the same
time, graphical user-interface (GUI) of such appli-
cations require several different visual areas. In QS
these areas are defined as;

A set of 3D views, showing the shapes and the 1.	
rules, allowing a designer to see and manipulate
them (figure 1). This structure of GUI viewports
reflect the algorithm of QS.
A main 3D view, showing the current design 2.	
composition, the desig nSet. In QS, this is central
and the largest viewport (figure 1). A designer
cannot manipulate on this viewport objects di-
rectly as it is controlled by the designSet section
of the GUI panel (figure 2).
A GUI panel, including icons of the new functions 3.	
added to the software (figure 2). QS maximizes

Figure 1
GUI layout of QS on a single-
monitor computer

Figure 2
Main GUI panel of QS

 eCAADe 25 943-Session 20: Shape Studies

visual interaction with the designer, operating
on “see and point” method. Thus, a designer can
use all functions of QS without any keyboard in-
put.

The algorithm and the design strategy
QS is developed as a scripted utility using the soft-
ware’s built-in scripting language. The software is
completely functional while QS is running (with
some exceptions). The algorithm of QS introduces
two collections of objects (shapeSet, ruleSet), and
a sequential structure (designSet) to record and
manipulate the design process (figure 3). Although
these collections are named as “set”, they are not
closed structures. QS allows a designer to define
shapes and rules, and to manipulate them in the de-
sign process synchronously.

ShapeSet represents the vocabulary of objects
to be used in a grammar. QS does not include any
object creation functions as the software already
provides them. Any object created within the soft-
ware can be assigned to shapeSet, regardless of its’

class or geometry (2D & 3D primitives, objects with
“modifiers”, NURBS surfaces, boolean objects, lights,
cameras etc.). There is no limit on the number of dif-
ferent objects that can be assigned to this collection.
An object may be removed from the shapeSet if it is
not used in any shape rule. In order to start a genera-
tive process, at least one object must be assigned to
shapeSet and one rule must be defined in ruleSet.

RuleSet allows designers to define rules through
spatial relations. Each rule in the ruleSet consists of
two shapes instanced from shapeSet; the source
shape represents left-hand side and the target shape
represents right-hand side of the rule. Shape rules
may be defined as additive (adding the target shape,
keeping the source shape) or replacing (removing
the source shape with target shape). There is no limit
on the number of different rules that can be defined.
A rule can be removed from the set, if it is not ex-
ecuted at any step of designSet.

QS operates on the local-space transformation
matrix (position, rotation and scale) which is includ-
ed in the software. Connecting source shape as the

Figure 3
Basic generative process of
QS, introducing object sets
and sequential structure

944 eCAADe 25 - Session 20: Shape Studies

parent object of target shape, their transformation
matrixes will cooperate automatically. Using this
technique, computation of a shape rule becomes a
process of shape replacement (figure 4).

Creation of a shape rule brings additional func-
tions and puts QS in a different mode. Thus, another
GUI panel pops up (figure 5). After defining the shape
rule, this panel closes and the new rule is added to
ruleSet list. It is possible to change the rule by select-
ing it from the main GUI panel (figure 2) and manipu-
lating it on the ruleSet viewport (figure 1) using built-
in transformation functions of the software.

DesignSet represents the design space. Its’
structure records an array of steps. These steps are
generation sequences that designer creates and
manipulates. Each member of this set includes an
object selected from a previous step of designSet
and a rule from ruleSet applied to it. It is possible to
re-compose the designSet by applying the changes
that a designer makes on shapeSet objects and/
or shape rules. In order to help designer test dif-
ferent variations, sequences can be removed from
the designSet. Also, the design sequences may be

rewinded and re-executed step-by-step by the de-
signer to see the process in a more perceivable way.
Although the designSet is sequential, it is not nec-
essary to generate shapes sequentially. A designer
may choose to use any object created before in de-
signSet (figure 6, 8).

Figure 4
On the left; traditional shape
rule definition. On the right;
shape rule definition of QS

Figure 5
GUI of “Rule Recorder”
in QS

Figure 6
Logic of designSet recording

 eCAADe 25 945-Session 20: Shape Studies

Testing QS

Scope of the QS test includes the form-finding pro-
cess of a building complex. The test focuses on con-
trolling the design process of the tool rather than
creating a final design.

The test started by assigning some temporary
shapes to the shapeSet. After defining some rules
(figure 7), generation process started by declaring
an initial shape from the shapeSet. Manipulating
the shapes and rules, the design process immedi-
ately opens up new creative possibilities (figure 10,
11). Moreover, user may restart the process from
the beginning, creating a different alternative using
the same shapeSet and ruleSet (figure 9). All design
sequences may be re-executed step-by-step by the
designer (figure 8). Designer may chose to stop the
process and continue form-finding without QS, or
may save the whole process to a CAD file to restore
and continue later.

Figure 7
ShapeSet and ruleSet

Figure 8
DesignSet sequences

946 eCAADe 25 - Session 20: Shape Studies

Conclusion and further research

Developmental potentials of QS includes the imple-
mentation of additional features the visualization
software provides. Thus, using current version of QS
as a basis, various specific add-ons can be developed.
Some of these potentials are described below;

Emergent Shape Recognition: In order to main-1.	
tain computational continuity in the genera-
tion process, emergent shapes are important.
Using boolean techniques and a comparsion

algorithm, emergent shape recognition module
might be added to QS.
Time-based Features: In addition to designSet 2.	
recording, QS might be improved using sophisti-
cated animation features of the software, such as
keyframing and inverse kinematics. These features
might provide some analytical capabilities as well.
Automation Module: Instead of maximum user 3.	
control, the system might provide a degree of
automation. In this case, QS would allow users to
define constraints and calculate multiple com-
putations based on these given goals.

The tool described here is a part of an ongoing re-
search project. According to first application tests,
QS is stable and flexible enough to be used in quick
form-finding exercises. Although a scripted utility is
not a “real” stand-alone software, it is advantageous
in terms of the balance between required program-
ming effort and the expected benefit.

References

Celani, G., 2001, MIT-MIYAGI workshop 2001, http://fac-
ulty.arch.usyd.edu.au/kcdc/ijdc/vol03/papers/.

Gips, J.: 1999, Computer implementation of shape gram-
mars, NFS/MIT Workshop on Shape Computation,
http://www.shapegrammar.org/projects.html.

Knight, T.: 1999, Shape grammars in education and prac-
tice: history and prospects, International Journal of
Design Computing 2.

McGill, M. C.: 2002, Shaper2D: visual software for learn-
ing shape grammars, in Proceedings of the 20th
eCAADe Conference, Warsaw, pp. 148-151.

Stiny, G. and Gips, J.: 1972, Shape grammars and the
generative specification of painting and sculpture,
in C. V. Freiman (ed.), Information Processing 71,
North Holland, Amsterdam, pp. 1460-1465.

Tapia, M.: 1999, A visual implementation of a shape
grammar system, Environment and Planning B,
26(1), pp. 59-73.

Wang, Y. and Duarte, J. P.: 2002, Automatic generation
and fabrication of designs, Automation in Construc-
tion, 11(3), pp. 291-302.

Figure 9
Some alternative designs cre-
ated by using the same shapes
and rules

Figure 10
An alternative design created
by changing the a shape and
updating the designSet

Figure 11
Some alternative designs cre-
ated by changing a rule and
updating the designSet

