After Puzzling, I tried to establish more of Escher’s basic grid transformations using Grasshopper’s native components. This definition simulates Escher’s transformation of four-cornered grids. Postulate is based on the fact that every quadrilateral (or triangular) planar shape can create regular tessellations without gaps or overlaps. In traditional method, this tessellation is achieved by rotating the shape 180 degrees and copying afterwards. However, in Grasshopper we simply define a fifth point for each shape and divide subsurfaces into four triangular surfaces. There are also more complicated methods of Escher that should […]