In this final project, wooden sticks are arranged to produce ruled surfaces for various uses such as sitting, leaning etc. Here are some photos of the final prototype and it’s production phases. Final prototype Digital model First sketches. *Students: Dilara Çerçi, Elham Kaya, Gizem Kama, Gül Zorlu, Gülşah Kılıç, Orhan Ünver, Yiğit Altındağ, Sena Ortaç Here is the students’ blog on this project.

After several readings I’ve understood the way of working the new and very interesting feature of Kangaroo 2: “Grab”. Now, we can actually grab the Grasshopper objects from Rhino viewport! Also, while on one hand the new Kangaroo has a very special way of working (not common to us, native Grasshopper users) and on the other hand, it is very very easy to use and understand now. I loved that. Here is the classical truss exercise I’ve made with my students at Parametric Modeling class;     This is the […]

It is a nice exercise to study various components about point to curve transformations and vice versa. Tower Crane was our second week exercise at İstanbul Bilgi University Faculty of Architecture Parametric Modeling class, asking students to design and draw a parametric object that has joints and parts that are moving alongside straight lines. Below is the most “safe-side” solution for me, although there are also very complicated solutions such as Mertcan’s. [GHX: 0.9.0076] here is the Grasshopper definition.

This is a classical method of generating tree-like forms utilizing a simple command “Arc SED”. The idea is simple, as the command draws arcs using an input direction vector, so this could easily be implemented creating “smooth” composition of curves just by iteration. Actually, this has been a previous study, discussed before here, using Hoopsnake. Now, this time I’m implementing the same algorithm using Anemone and a couple of other changes.   Here is the Grasshopper definition (Anemone Components should be installed first): [GHX: 0.9.0076].

Utilizing “Force Field” components of Grasshopper to show my students how it is easy to develop flexible surfaces in design. The classical parametric canopy design is introduced in this video: According to Wikipedia; In vector calculus, a vector field is an assignment of a vector to each point in a subset of space.[1] A vector field in the plane, for instance, can be visualized as a collection of arrows with a given magnitude and direction each attached to a point in the plane. Vector fields are often used to model, […]

“A-Chord” design system is developed and constructed for the World Wood Day 2015 events in İstanbul. The structure is made of fifty wooden struts of 4 cm X 4cm with changing heights from 200 cm to 230 cm. Single unit of the structure is formed by two struts joined with a hinge to enable folding, while the nearby unit is folding to the opposite direction. The construction details, measurements of the struts, positions of the hinges, angles of the tensile chord axis are generated automatically by the parametric model. These automatic construction data enabled the revisions […]

Based on this post, the problem of modeling tree-like fractal shapes is still a good question for early years of computational design education. Last time, I used Rhino’s macro to study these kind of fractals in an “impossibly” limited interface, but this time both and Anemone are introduced to students. First, using a component that creates “the binary tree”: Here is the Grasshopper definition if you would like to see the simple loop in there: [GHX: 0.9.0076] (Don’t left click on the link, right click and “save the file” to your computer). Then, […]

Some facade studies as early sketches of an architectural project; all of them are utilizing the similar Grasshopper approach. My favourite “Graph Mapper” generates the overall gridal deformation, then some of them are drawing geometry for membrane, while others are generated to be realized from sheet metal. Hopefully one or two of these could be further studied: I hope I’ll be able to improve these sketches and publish their definitions soon.

Further studying iteration in Grasshopper, this time, inspired by Stiny’s “Ice-Ray”ish subdivisions with Aneome, instead of Hoopsnake in the previous work. Here is the Grasshopper definition (Requires Anemone components to be installed first): [GHX: 0.9.0076] Of course this is just an inspiration not the real scientific study Stiny has conducted (although I receive lots of emails about the previous Hoopsnake implementation; guys I’m not sure if this kind of algorithms are suitable for academic studies). Anyway this definition chooses random splitting directions of a surface for every iteration.

About to finish the well-defined section of this year’s Parametric Modeling course, here are the mid-term questions I’ve asked; First question checks if the curve < > point conversions are well understood in Grasshopper. Evaluating a parametric curve and generating closest point from another curve. This also requires a basic understanding on the use of Grasshopper interface. Second question was testing a basic and classical use of attractors on grids of objects. Students generated their own grids and put pyramids on each cell, as the height of these pyramids would […]